Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Signal Transduct Target Ther ; 8(1): 179, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2313877

RESUMEN

The emergence of adapted variants of the SARS-CoV-2 virus has led to a surge in breakthrough infections worldwide. A recent analysis of immune responses in people who received inactivated vaccines has revealed that individuals with no prior infection have limited resistance to Omicron and its sub-lineages, while those with previous infections exhibit a significant amount of neutralizing antibodies and memory B cells. However, specific T-cell responses remain largely unaffected by the mutations, indicating that T-cell-mediated cellular immunity can still provide protection. Moreover, the administration of a third dose of vaccine has resulted in a marked increase in the spectrum and duration of neutralizing antibodies and memory B cells in vivo, which has enhanced resistance to emerging variants such as BA.2.75 and BA.2.12.1. These results highlight the need to consider booster immunization for previously infected individuals and the development of novel vaccination strategies. The rapid spread of adapted variants of the SARS-CoV-2 virus presents a significant challenge to global health. The findings from this study underscore the importance of tailoring vaccination strategies based on individual immune backgrounds and the potential need for booster shots to combat emerging variants. Continued research and development are crucial to discovering new immunization strategies that will effectively protect public health against the evolving virus.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , SARS-CoV-2 , Linfocitos B , Anticuerpos Neutralizantes/genética
2.
Arthritis Res Ther ; 24(1): 6, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1590005

RESUMEN

BACKGROUND: Hydroxychloroquine (HCQ) has been recommended as a basic treatment for lupus nephritis (LN) during this decade based on its ability to improve LN-related renal immune-mediated inflammatory lesions. As a classical lysosomal inhibitor, HCQ may inhibit lysosomal degradation and disrupt protective autophagy in proximal tubular epithelial cells (PTECs). Therefore, the final renal effects of HCQ on LN need to be clarified. METHOD: HCQ was administered on spontaneous female MRL/lpr LN mice with severe proteinuria daily for 4 weeks. Moreover, the MRL/lpr mice with proteinuric LN were subjected to cisplatin-induced or unilateral ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) after 2 weeks of HCQ preadministration. RESULTS: As expected, HCQ treatment increased the survival ratio and downregulated the levels of serum creatinine in the mice with LN, ameliorated renal lesions, and inhibited renal interstitial inflammation. Unexpectedly, HCQ preadministration significantly increased susceptibility to and delayed the recovery of AKI complicated by LN, as demonstrated by an increase in PTEC apoptosis and expression of the tubular injury marker KIM-1 as well as the retardation of PTEC replenishment. HCQ preadministration suppressed the proliferation of PTECs by arresting cells in G1/S phase and upregulated the expression of cell cycle inhibitors. Furthermore, HCQ preadministration disrupted the PTEC autophagy-lysosomal pathway and accelerated PTEC senescence. CONCLUSION: HCQ treatment may increase susceptibility and delay the recovery of AKI complicated by LN despite its ability to improve LN-related renal immune-mediated inflammatory lesions. The probable mechanism involves accelerated apoptosis and inhibited proliferation of PTECs via autophagy-lysosomal pathway disruption and senescence promotion.


Asunto(s)
Lesión Renal Aguda , Nefritis Lúpica , Lesión Renal Aguda/inducido químicamente , Animales , Femenino , Hidroxicloroquina/farmacología , Riñón/patología , Ratones , Ratones Endogámicos MRL lpr
3.
Cell ; 185(5): 860-871.e13, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1650841

RESUMEN

The SARS-CoV-2 Omicron variant with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the spike (S) from Omicron reveals amino acid substitutions forging interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of the viral fusion step. Alterations in local conformation, charge, and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Structure of the Omicron S bound with human ACE2, together with the analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members, as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies, sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.


Asunto(s)
Evasión Inmune/fisiología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/inmunología , Sitios de Unión , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Microscopía por Crioelectrón , Humanos , Mutagénesis Sitio-Dirigida , Pruebas de Neutralización , Unión Proteica , Dominios Proteicos/inmunología , Estructura Cuaternaria de Proteína , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Resonancia por Plasmón de Superficie , Acoplamiento Viral
4.
Pharmacol Res ; 172: 105820, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1531713

RESUMEN

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enter the host cells through the interaction between its receptor binding domain (RBD) of spike glycoprotein with angiotensin-converting enzyme 2 (ACE2) receptor on the plasma membrane of host cell. Neutralizing antibodies and peptide binders of RBD can block viral infection, however, the concern of accessibility and affordability of viral infection inhibitors has been raised. Here, we report the identification of natural compounds as potential SARS-CoV-2 entry inhibitors using the molecular docking-based virtual screening coupled with bilayer interferometry (BLI). From a library of 1871 natural compounds, epigallocatechin gallate (EGCG), 20(R)-ginsenoside Rg3 (RRg3), 20(S)-ginsenoside Rg3 (SRg3), isobavachalcone (Ibvc), isochlorogenic A (IscA) and bakuchiol (Bkc) effectively inhibited pseudovirus entry at concentrations up to 100 µM. Among these compounds, four compounds, EGCG, Ibvc, salvianolic acid A (SalA), and isoliensinine (Isl), were effective in inhibiting SARS-CoV-2-induced cytopathic effect and plaque formation in Vero E6 cells. The EGCG was further validated with no observable animal toxicity and certain antiviral effect against SARS-CoV-2 pseudovirus mutants (D614G, N501Y, N439K & Y453F). Interestingly, EGCG, Bkc and Ibvc bind to ACE2 receptor in BLI assay, suggesting a dual binding to RBD and ACE2. Current findings shed some insight into identifications and validations of SARS-CoV-2 entry inhibitors from natural compounds.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Antivirales/química , Productos Biológicos/química , Tratamiento Farmacológico de COVID-19 , Inhibidores Enzimáticos/química , SARS-CoV-2/enzimología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Antivirales/farmacología , Unión Competitiva , Productos Biológicos/farmacología , Catequina/análogos & derivados , Catequina/farmacología , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Chalconas/farmacología , Ácido Clorogénico/análogos & derivados , Ácido Clorogénico/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Ginsenósidos/farmacología , Humanos , Interferometría , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Fenoles/farmacología , Unión Proteica
5.
Protein Cell ; 13(9): 655-675, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1432661

RESUMEN

New threats posed by the emerging circulating variants of SARS-CoV-2 highlight the need to find conserved neutralizing epitopes for therapeutic antibodies and efficient vaccine design. Here, we identified a receptor-binding domain (RBD)-binding antibody, XG014, which potently neutralizes ß-coronavirus lineage B (ß-CoV-B), including SARS-CoV-2, its circulating variants, SARS-CoV and bat SARSr-CoV WIV1. Interestingly, antibody family members competing with XG014 binding show reduced levels of cross-reactivity and induce antibody-dependent SARS-CoV-2 spike (S) protein-mediated cell-cell fusion, suggesting a unique mode of recognition by XG014. Structural analyses reveal that XG014 recognizes a conserved epitope outside the ACE2 binding site and completely locks RBD in the non-functional "down" conformation, while its family member XG005 directly competes with ACE2 binding and position the RBD "up". Single administration of XG014 is effective in protection against and therapy of SARS-CoV-2 infection in vivo. Our findings suggest the potential to develop XG014 as pan-ß-CoV-B therapeutics and the importance of the XG014 conserved antigenic epitope for designing broadly protective vaccines against ß-CoV-B and newly emerging SARS-CoV-2 variants of concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA